EFFECT OF A TEMPERATURE GRADIENT ON THE
HEAT TRANSFER DURING LAMINAR NATURAL
CONVECTION ALONG A VERTICAL WALL

V. M. Kapinos, A. F. Slitenko, UDC 536.25
and I. L. Volovel'skii

Results are shown of calculations and of an experimental study concerning the heat
transfer during laminar natural convection along a vertical wall, in the general case
when the temperature excess varies along the wall height according to an arbitrary
law,

The effect of an anisothermal wall on the heat transfer coefficient during natural convection was most
thoroughly analyzed in [1]. A solution to the problem was sought through a similarity transformation of a
system of partial differential equations, this system including the mass equation, the momentum equation,
and the energy equation, The resulting system of ordinary differential equations was then integrated nu-
merically for two special cases, namely for a power-law and for an exponential-law distribution of the
temperature excess, Integral relations for the boundary layer were used in a later study 12]. The profiles
of temperature and velocity were represented by fifth-degree polynomials, An approximate solution was
obtained for a power-law temperature distribution,

In order to solve the problem for the general case of an arbitrary temperature distribution along the
height of a vertical wall, here the authors will use the integral equation of heat transfer in a boundary
layer
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where 6.;* = S‘(vx/v;’{) (1— (tw—t)/ (tw—tf))dy is the heat-content thickness, Equation (1) has been derived as
in the case of forced convection, with the maximum velocity in the boundary layer v; replacing the main-
stream velocity.

The magnitude of vg( is determined from the approximate solution to the momentum equation
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with the velocity profile and the temperature profile in the laminar boundary layer represented as
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and assumed to satisfy the following boundary conditions:
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Fig. 1. Comparison between test data and theoretical relations
for various profiles of the temperature excess: (a) power-law pro-
file, (b) exponential-law profile; 1) according to formulas (16) and
(14); 2) numerical solution in [1]; 3) approximate solution in [2];
dots represent test values,

< or, a6
y==5-'--0,. Ux=0, ‘~—-——~-_—‘0 0“—0 E ::0,

dy

The solution to Eq, (2) will be
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Then, in order to solve Eq. (1), it is necessary to express the law governing the heat transfer in terms of
a relation between the heat transfer coefficient and the Reynolds number, both referred to the heat-content
thickness, The sought relation can, to the first approximation, be found on the assumption that it does not
depend on the altitudinal temperature gradient and that, consequently, it is identical to the law governing

the heat transfer at an isothermal wall,

convection {3].

Letting

in (1), we obtain

Nuy = ¢Grf, ¢=¢(Pr).
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The integral of Eq. (5) is

From here
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The maximum velocity in the boundary layer will now be expressed as a function of Rev’{-::

EE ]
3n PrRe,, )7’7

s 0.5
== 0.393 k gh% ) 10.3.x0.5 == 0.393 . ( p

After eliminating Gry, and v} from the equality
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An analogous assumption is usually made in the analysis of forced
For 6w = const 1€t us now assume the power-law approximation
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Fig. 2. Electric circuit of the heater system for the plate-

calorimeter,
we have the law of the heat transfer
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By virtue of the earlier assumption that the law of the heat transfer is conservative with respect to the
gradient of the temperature excess 8y, we have
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The solution to Eq. (10), with expression (4) taken into account, is
x 1
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1t follows from (1) that

Combining (11) and (12) yields
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Fig. 3. Heat transfer (1) at an isothermal plate, (2) at
a plate with a square-law temperature profile along its
height: a) 6w = 25°C, b) 6w = 50°C, c) 6y = 75°C,d) 8.,
=100°C, e) 6y, = 125°C.

In the case of laminar flow we have n = 0,25 and, therefore,
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If for 6w = const we assume that Nup, = C(Pr GrL)n, then relation (14) becomes
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The mean heat transfer coefficient will be defined as the ratio of the mean-integral thermal flux density
to the mean-integral temperature excess

Inserting o, from the solution to (14), we obtain

i ok
Nu== 1836 Gre 2 o 0 (15)

where

Gr -

gBo, 1 1

srm o — 0, dx.

v . B ; J e dX
0

In the special case of a power-law temperature profile, when 6, = dx™, the theoretical value of the local
Nusselt number is
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TABLE 1, Test Data on the Heat Transfer at a Plate with 6y,

= dx0.6
N 2 m ty, °C 8,5 °C LA v. V. e W/mk*°C
1 0,008 95,6 81,6 3,28 0,332 . —
2 0,024 63,4 49,4 1,97 0,192 0,513
3 0,040 45,9 3t,9 1,34 0,163 0,386
4 0,056 39,5 25,3 ,16 0,144 0,428
5 0,072 35,7 21,7 0,97 0,135 0,251
6 0,088 33,3 19,3 0,92 0,128 0,294
7 0,104 31,3 17,3 0,88 0,123 0,366
8 0,120 30,1 16,1 0,867 0,120 | 0,445
9 0,136 28,8 | 14,8 0,840 0,113 0,438
10 0,152 27,8 13,8 0,828 0,110 0,51
11 0,168 27,0 13,0 0,80 0,109 0,551
12 0,184 26,4 | 124 0,694 | 0,094 0,075
13 0,200 25,7 11,7 . 0,85 0,088 —0,042
14 0,216 25,2 11,2 0,647 0,087 0,005
15 0,232 24,7 10.7 0,634 0,080 —0,083
16 0,248 24,3 10,3 0,640 0,086 0,118
17 0,264 24,0 10,0 0,614 0,082 0,027
18 0,280 23,7 9,7 0,609 0,0806 0,022
19 0,296 23,5 9,5 0,600 0,080 0,035
20 0,312 23,2 9,2 0,68 0,092 —_

The solutions according to [1, 2] and the criterial relation (18) for Pr = 0.7 are compared in Fig, 1,
The approximate solution (16) is almost identical to the numerical solution in [1] over the entire range of
m from —0.6 to 3.0, for which Nuy, has been determined in [1]. We note that, with a temperature profile
by = dx~%%, Nugp, is equal to zero on the entire wall surface.

The criterial relation (14) is valid for any temperature profile along the wall surface under which
convection remains laminar, This approximate solution has been checked against test data for special
cases of a power-law (8 =dx™)and an exponential-law (6w = bekX) altitudinal profile of the temperature
excess.

The process of natural convection was studied in an unbounded air space. The local heat transfer
coefficients were measured by the calorimetric method: a plate acting as the calorimeter was heated with
transverse strips of alloy EI-442M foil 0,1 mm thick, this alloy having an electrical resistivity only very
slightly dependent on the temperature. Each strip was 100 mm long and 15 mm wide, with a clearance
of 1 mm between them. The plate, made of glass-Textolite 320 mm long and 4 mm thick, was placed in
the vertical position, Both sides of the plate weré covered with 20 such electric heater strips carrying
de current from a motor-generator set as shown in Fig, 2. Each matching pair of heaters on both sides
at the same distance from the lower edge of the plate was connected in series and the power in each could
be regulated independently through rheostats, This made it possible to establish a temperature field in the
plate symmetrical with respect to its median section and, at the same time, also made it possible to re-
gulate the temperature field along the height of the plate. The heat conduction through glass-Textolite
was negligible: even during the most drastic temperature drop along the surface at 6w ~ %%, the averagd
heat leakage from one segment of the plate-calorimeter amounted to less than 1% of the heat generated by

its electric heater,

The foil strips were capacitor-welded to copper shunts. One shunt of each strip was firmly fastened:
to the plate, but the other shunt was spring-mounted to allow for thermal expansion during heating, The
foil strips were attached to the plate, since the spring tension ensured a sufficiently solid contact.

The local heat transfer coefficient was calculated according to the formula
IV —Q

Fo,
The current I and the voltage V were measured with model M1107 class 0.2 voltammeters, The tempera-
ture of the heat transfer surface and the ambient temperature were measured with calibrated Chromel
—Copel thermocouples 0.2 mm in diameter and with a model R-307 class 9.015 potentiometer. The thermo-
couples, both the main and the auxiliary ones, were welded to the inner surface of the heaters, then laid
along grooves specially cut in the plate, and finally brought out braided inside metallic shielding sleeves.
The readings of the main thermocouples were used in the formulas for the heat transfer coefficients,
while the readings of the auxiliary thermocouples served to estimate the heat leakage along each strip.
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w
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Fig. 4. Calculated and measured temperature pro-
file 8y (°C) along the plate height x (mm): (a) ac-
cording to a power law with 1) m =—-0,6, 2) m

= 2.0; (b) according to an exponential law with 3)
k=-5, 4) k=10.

The first test series was performed at a constant temperature excess of 25, 50, 75, 100, and 125°C,
for the purpose of checking out the test procedure. The results of these tests are shown in Fig. 3 (curve
1). The test values of the local Nusselt number Nuy, agree almost exactly with those according to the well-
known theoretical formula in [4]

Nup =0.36 Gr‘i‘%, 17
which has been repeatedly confirmed by tests,

The effect of the temperature gradient on the heat transfer coefficient was studied in the case of a
power-law profile of the temperature excess, with the power exponent equal to 2.0, 1.5, 1.0, 0.5, 0.25,
-0.25, —0.5, and —0.6 respectively, The test data were then evaluated in terms of power monomials

Nup = C,, Gry ™.

The averaging values of Cy, for each test series are compared in Fig. 1 with theoretical values. The em-
pirical relation Nujy, = f(Gry,) corresponding to a square-law profile of the temperature excess is shown in
Fig. 3 (curve 2), As compared to an isothermal plate, the heat transfer rate is in this case 70% higher,
As the power exponent decreases, the heat transfer coefficient also decreases and, according to computed
data, becomes zero when m = —0,6. The test data for this specific case are given in Table 1.

At x > 0.18 m the measured local heat transfer coefficients were by approximately two orders of
magnitude smaller than according to formula (17) for an isothermal plate, At the lower edge the heat
transfer rate was reduced less appreciably. At x = 0.024 m, for example, the local heat transfer coeffi-
cient was only 5.5 times smaller., An explanation for this may be, most probably, that the temperature
profile along the height of the calorimeter plate could be regulated only discretely. On account of this,
the profile of the temperature excess was reconstructed approximately only, in the form of a piecewise
constant function deviating from the stipulated profile most markedly at low values of the argument (Fig.
4, curve 1). The overall thermal flux density, calculated on the basis of the mean heat transfer coeffi-
cient for an isothermal plate with 2 mean-integral temperature excess of 20°C, was found to be 13 times
higher than the mean thermal flux density measured at 6y = dx 0,
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Tests were also performed with an exponential -law profile of the temperature excess, 6y = pekx
The values of paraméter k were made equal to 15, 10, 5, and —5 respectively. The profile of the tempera-
ture excess along the plate height is shown in Fig. 4b for k = 10 and -5 respectively. The test results are
shown in Fig. 1 in terms of the relation Nigy,/Gr}® = f(kx).

The theoretical relation shown in [1] {for Pr = 0.7) agrees with the test data only within kx > 0.5.
This is, apparently, due to the singularity at k = 0 in the similarity transformation used in [1]. The values
of local heat transfer coefficients calculated according to formula (14) agree with the test data over the en-
tire test range of kx (see Fig. 1). '

Thus, the approximate relation (14) obtained for the general case of an arbitrary temperature pro-
file along the plate height has heen checked against test data, with the profile of the temperature excess
assumed to follow two different laws respectively and with various values assumed for k and m determining
the rate of increase or decrease of the temperature excess in the direction of flow. Such an agreement
between results of measurement and calculation also confirms, indirectly, the validity of the assumption
that the law governing the heat transfer is self-adjoint with respect to the temperature gradient.

NOTATION

53'1=~* is the heat-content thickness;
0 is the thickness of the hydrodynamic boundary layer;
oT is the thickness of the thermal boundary layer;

X is the abscissas measured from the lower edge along the plate;
y is the ordinates along a normal to the plate;

l is the plate length;

o is the heat transfer coefficient;

A is the thermal conductivity;

Cp is the specific heat;
p is the density;
is the kinematic viscosity;
0=1t-—1f is the temperature excess in the boundary layer;
Oy = tw—tf is the temperature excess at the wall (plate);
tw is the temperature at the plate surface;
tf is the ambient temperature beyond the boundary layer;
t ig the temperature in the boundary layer;
Nu is the Nusselt number;
Pr " is the Prandtl number;
Gr is the Grashof number;
Qr : is the heat loss due to radiation;
F is the surface area of an electric heater.
Subscripts

L relates to local values;
0 relates to flow without temperature gradient,
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