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Results are shown of calculations and of an experimental study concerning the heat 
transfer during laminar natural convection along a vertical wall, in the general case 
when the temperature excess varies along the wall height according to an arbi t rary 
law. 

The effect of an anisothermal wall on the heat transfer coefficient during natural convection was most 
thoroughly analyzed in ['1]. A solution to the problem was sought through a similarity transformation of a 
system of partial differential equations, this system including the mass equation, the momentum equation, 
and the energy equation. The resulting system of ordinary differential equations was then integrated nu- 
merically for two special cases, namely for a power-law and for an exponential-law distribution of the 
temperature excess. Integral relations for the boundary layer were used in a later study r2]. The profiles 
of temperature and velocity were represented by fifth-degree polynomials. An approximate solution was 
obtained for a power-law temperature distribution. 

In order to solve the problem for the general case of an arbi trary temperature distribution along the 
height of a vertical wall, here the authors will use the integral equation of heat transfer in a boundary 
layer 

d6:" - - (  1 do~ , 1 dOw ) 6 : ' =  ~L 
T 0--:- d x  _ ' (1 )  

5 

** f (Vx/V ~  (tw--t)/(tw--tf))dyis the heat-content thickness. Equation (1) has been derived as where 6 T = 
) 
0 

in the ease of forced convection, with the maximum velocity in the boundary layer V~ replacing the main- 
stream velocity. 

The magnitude of v~ is determined from the approximate solution to the momentum equation 

6 b 

d 6dy-v( dvx/, d-7(S , :o 
0 0 

with the velocity profile and the temperature profile in the laminar boundary layer represented as 

( ' )  (+/] ( +; v x - -  g~0w6" - - 2  _ 0 = 0  w 1 - -  (31 
4v -~- ' ' 

and assumed to satisfy the following boundary conditions: 

0~~ gf~O'~ 0 = 0o. y=:0 vx=0, - - - -  
Oy ~ v 
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Fig.  1. Compar ison  between tes t  data and theore t ica l  re la t ions  
for var ious  prof i les  of the t empera tu re  excess :  (a) power- law p r o -  
f i le,  (b) exponential- law profi le ;  1) according to formulas  (16) and 
(14)I 2) numer ica l  solution in [1]; 3) approximate  solution in [2]; 
dots r e p r e s e n t  tes t  values .  

The solution to Eq. (2) will be 

y = a = 6 ,  v . - o , - - ~ "  =o, o=o, oo =o. 
Oy c~y 

= o::..., (.t. oO aq_  ,o 
, - x \0 .5  

9 ~ = 0.393(,, e~ t~ / ~ (i. 'O:'~dx) " (4) 
0 

Then,  in o rde r  to solve Eq. (1), it is n e c e s s a r y  to exp re s s  the law governing the heat t r ans fe r  in t e rms  of 
a re la t ion  between the heat  t r ans fe r  coefficient  and the Reynolds number,  both refer . red to the heat -content  
thickness .  The sought re la t ion  can, to the f i r s t  approximation,  be found on the assumption that it does not 
depend on the altitudinal t empera tu re  gradient  and that,  consequently,  it is identical to the law governing 
the heat t r a n s f e r  at  an i so thermal  wall.  An analogous assumption is usually made in the analysis  of forced  
convect ion [3]. For  0 w  = const  le t  us now assume the power- law approximation 

Let t ing 

in (I), we obtain 

The integral  of Eq. (5) is 

F r o m  he re  

NuL = ~Grt[, q = ~p (Pr). 

d0. ..... 0, 
dx 

a~;~ + ~;~ _ _  
dx 2x 0.393 v ~ (5) 

~;~.. ~ o~?. 
3nV~ 

v 3n Pr 

The maximum velocity in the boundary layer will now be expressed as a function of Re~o: 
l 

V~o ::: ~- v T - - )  @5.x~ -- 0.393 x 

After  el iminating Gr  L and v ~  f rom the equality 

aL (~Gr~k 
0 -"  0 ' 

[OCp Uxo XbOCp Uxo 

(6) 

(7) 
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Fig.  2. E lec t r i c  c i rcu i t  of the hea te r  s y s t e m  for  the p l a t e -  
c a l o r i m e t e r .  

we have the law of the hea t  t r a n s f e r  

(Z. L 
0 - -  pep Vx, 

i~e::; ~-, A = ~.~,,.o.~ (~,)~( ~ ,  " 

By v i r tue  of the e a r l i e r  a s sumpt ion  that  the law of the heat  t r a n s f e r  is conse rva t ive  with r e s p e c t  to the 
gradient  of  the t e m p e r a t u r e  excess  0 w, we have 

2n--I 

~'L = A (Re'r*) ~ -  o 
pep  Ox 

where  
** 0 

Re;" ~ v~ 
V 

When #w = v a r ,  then 

�9 o = A (Re:.') '-~" 
dx , v,: dx Ow dx 

The solution to Eq.  (10), with exp re s s ion  (4) taken Into account,  is  

I t  follows f rom (1) that  

Combining (11) and (12) y ie lds  

�9 . o  ioo*) " ~T Ox Ow = 2n--I Ox . ,  dx . 

2nv " 

d ** 0 (St OxOw)= q :- NUL0'~'v 
dx pcp x Pr 

I - - 1 . 6 t t - 2 n  i 

Nu L : 1.52"-' (P Grn0L ~ ~ xl-3" 

(i, 0~ ,os 0~" dx) '  
0 

x l - i - 0 . 4 n  x 

l.I ~  (.i o:o ~:)o~ .x ]o.~ 
0 0 

(8) 

( 9 )  

(lO) 

(11) 

(12) 

(13) 
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F i g .  3. H e a t  t r a n s f e r  (1) a t  an  i s o t h e r m a l  p l a t e ,  (2) a t  
a p l a t e  wi th  a s q u a r e - l a w  t e m p e r a t u r e  p r o f i l e  a l o n g  i t s  
he igh t :  a) 0w = 25~ b) 0w = 50~C, c) 0w = 75~ d) 0nv" 
= 100~C, e) 0 w = 125~ 

In the  c a s e  of  l a m i n a r  f low we have  n = 0.25 and ,  t h e r e f o r e ,  

x 

(.i~176 0:. d x ) '  
. . ~ U  L ~ , - , , , - ,  ~ 0 2 5 , , 0  95 0 2 5  :=u.olocpur~ o;~ x" o 

[.( 0-~.~ ," ,;~ ,o.6 .~,,o.s �9 o !.I "~ "~] dx] ~ 
0 0 

If  fo r  Ow = e o n s t  we  a s s u m e  tha t  Nu L = C ( P r G r L )  n,  then  r e l a t i o n  (14) b e c o m e s  
x 

Nu L =: 0.818 C ~Pr GrL )~176 0w ~̂176 o..0.3 0 
A" x [. (I t ~  ~ ~ ao ~.,-, 

0 0 

The  m e a n  h e a t  t r a n s f e r  c o e f f i c i e n t  w i l l  be de f ined  a s  the  ratio of  the  m e a n - i n t e g r a l  t h e r m a l  f lux d e n s i t y  
to the  m e a n - i n t e g r a l  t e m p e r a t u r e  e x c e s s  

I 

i' ~L % dx 

~ ' m  _ O . - - 1  . . . . .  

i' % dx 
b 

I n s e r t i n g  ~ f r o m  the s o l u t i o n  to (14), we ob t a in  

w h e r e  

Nu := 1.636q Gr e ~5 lO.; 

g130 m I a 
V 2 

Gr 

l x 
[ ' ~ 2 . 2  / r ~ 0 . 6 - - p  ' C.5 10 .5  

I 
0 0 

1 

(f % dx) 
0 

I 

I i' 0 m , ,  --/-- % dx. 

(14) 

(14a) 

(15) 

In the  s p e c i a l  c a s e  of  a p o w e r - l a w  t e m p e r a t u r e  p r o f i l e ,  when 0 w = dx m,  the  t h e o r e t i c a l  va lue  o f  the  l o c a l  
N u s s e l t  n u m b e r  i s  

' -  2.5m =- 1.5 , ,_,,~ 
Gr L " (16) Nu L = 0 . 8 1 8 ~ ]  ' I -0 .6m= 1 
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TABLE 1. 
= dx-0.6 

T e s t  Data on the Hea t  T r a n s f e r  at  a P la te  with 0 w 

.q x. m_ t w. oc oto, oc ~,W/m 2. ~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1O 
11 
12 
13 
14 
15 
16 
17 
18 
t9 
20 

'0,008 
0,024 
0,040 
0,056 
0,072 
0,088 
0,104 
0,120 
0,136 
0,152 
0,168 
0,184 
0,200 
0,216 
0,232 
0,248 
0,264 
0,280 
0,296 
0,3t2 

95,6 
63,4 
45,9 
39,5 
35,7 
33,3 
31,3 
30,~ 
28,8 
27,8 
27,0 
26,4 
25,7 
25,2 

24,7 
24,3 
24,0 
23,7 
23,5 
23,2 

81,6 
49,4 
31,9 
25,3 
21,7 
19,3 
17,3 
16,i 
14,8 
13,8 
13,0 
12,4 
11,7 
11,2 
10,7 
10,3 
10,0 
9,7 
9,5 
9,2 

I.A . . . .  v,y__ 

3,28 0,332 , 
1,97 0,192 
1,34 0,163 
P,16 0,144 
0,97 0,135 
0,92 0,128 
0,88 0,123 
0~ 0,120 
0,840 0,113 
0,828 0,110 
0,80 0,109 
0,694 0,094 
0,65 0,088 
0,647 0,087 
0,634 0,680 
0,640 0,086 
0,614 0,082 
0,609 0,0806 
0,600 0,080 
0,68 0,092 

r - -  

0,513 
0,386 
0~428 
0,251 
0,294 
0,366 
0,445 
0,438 
0,51 
0,551 
0,075 

--0,042 
O, 005 

--0,083 
0,118 
0,027 
0,022 
0,035 

The solut ions accord ing  to [1, 2] and the c r i t e r i a l  r e l a t ion  (16) for  P r  = 0.7 a r e  c o m p a r e d  in Fig. 1. 
The approx imate  solution (16) is a l m o s t  identical  to the numer ica l  solution in [1_] ove r  the en t i re  range  of 
m f rom - 0 . 6  to 3.0, for  which NUL has  been de te rmined  in [1]. We note that ,  with a t e m p e r a t u r e  prof i le  
0 w = dx -~ NUL is  equal to ze ro  on the en t i re  wall  su r face .  

The  c r i t e r i a l  r e l a t ion  (14) is val id  for  any t e m p e r a t u r e  prof i le  along the wall  su r face  under  which 
convect ion r e m a i n s  l a m i n a r .  This  approx imate  solution has  been  checked aga ins t  tes t  data  for  specia l  
c a s e s  of a power - l aw (8 w =dx m) and an exponent ia l - law (0w = be kx) alt i tudinal prof i le  of the t e m p e r a t u r e  
exce s s .  

The p r o c e s s  of na tura l  convect ion was  studied in an unbounded a i r  space .  The local  heat  t r a n s f e r  
coeff ic ients  w e r e  m e a s u r e d  by the c a l o r i m e t r i c  method:  a plate act ing as  the c a l o r i m e t e r  was  heated with 
t r a n s v e r s e  s t r i p s  of al loy ]~I-442M "foil 0.1 m m  thick,  th is  al loy having an e lec t r i ca l  r e s i s t i v i t y  only v e r y  
s l ight ly dependent on the t e m p e r a t u r e .  Each s t r i p  was  100 m m  long and 15 m m  wide, with a c l ea rance  
of  i m m  between them.  The pla te ,  made  of g l a s s -Tex to l i t e  320 m m  long and 4 ram thick, was  p laced in 
the ve r t i ca l  posi t ion.  Both s ides  of the plate  were  covered  with 20 such e lec t r i c  hea t e r  s t r i p s  c a r ry in g  
dc c u r r e n t  f r o m  a m o t o r - g e n e r a t o r  se t  as  shown in Fig.  2 .  Each matching  pa i r  of hea t e r s  on both s ides  
a t  the s a m e  dis tance f r o m  the lower  edge of the plate was  connected in  s e r i e s  and the power  in each could 
be regula ted  independently through rheos ta t s .  This  made it poss ib le  to es tab l i sh  a t e m p e r a t u r e  field in the 
plate s y m m e t r i c a l  with r e s p e c t  to i ts  median  sec t ion  and, a t  the s a m e  t ime ,  a lso  made  it poss ib le  to r e -  
gulate the t e m p e r a t u r e  field along the height of the plate.  The heat  conduction through g la s s -Tex to l i t e  
was  negligible:  even during the m o s t  d ra s t i c  t e m p e r a t u r e  drop along the su r face  at  0w ~ x 2, the ave rage  
hea t  leakage f rom one segment  of  the p l a t e - c a l o r i m e t e r  amounted to l e s s  than 1% of the hea t  genera ted  by 

i ts  e l ec t r i c  hea t e r .  

The  foil s t r i p s  w e r e  capac i to r -we lded  to copper  shunts.  One shunt of  each s t r i p  was  f i rm ly  fas tened �9 
to the p la te ,  but the o ther  shunt was spr ing-mounted  to allow for  t h e r m a l  expansion dur ing heating. The 
foil s t r i p s  were  a t tached to the p la te ,  s ince the spr ing  tension ensured  a sufficiently solid contact .  

The local  hea t  t r a n s f e r  coeff ic ient  was  calcula ted accord ing  to the fo rmula  

l V - Q ~  

a'L -- F0~,~ 

The c u r r e n t  I and the vol tage V were  m e a s u r e d  with model  Ml107 c l a s s  0.2 v o l t a m m e t e r s .  The t e m p e r a -  
ture  of the heat  t r a n s f e r  su r face  and the ambien t  t e m p e r a t u r e  w e r e  m e a s u r e d  with ca l ib ra ted  Chromel  
- C o p e l  the rmocoup les  0.2 m m  in d i am e t e r  and with a model  R-307 c l a s s  ~..015 po ten t iomete r .  The t h e r m o -  
couples ,  both the ma in  and the auxi l ia ry  ones ,  w e r e  welded to the inner su r face  of the h e a t e r s ,  then laid 
along g rooves  spec ia l ly  cut in the p la te ,  and finally brought  out b ra ided  inside meta l l i c  shielding s l eeves .  
The read ings  of  the m a i n  the rmocoup les  we re  used  in the fo rmu la s  for  the heat  t r a n s f e r  coeff ic ients ,  
while the r e a d i n g s  of the aux i l i a ry  the rmocouples  s e rved  to e s t ima te  the heat  leakage along each s t r ip .  
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Fig. 4. Calculated and measu red  tempera ture  p r o -  
file 0 w (~ along the plate height x (mm): (a) a c -  
cord ing  to a power law with 1) m = - 0 . 6 ,  2) m 
= 2.0; (b) accord ing  to an exponential law with 3) 
k = - 5 ,  4) k = 1 0 .  

The f i r s t  tes t  se r i e s  was pe r fo rmed  at a constant  t empera tu re  excess  of 25, 50, 75,100,  and 125~ 
for the purpose  of checking out the tes t  procedure .  The resu l t s  of these tes ts  a re  shown in Fig. 3 (curve 
1). The tes t  values of the local Nussel t  number  Nu L agree  a lmost  exactly with those according  to the well-  
known theoret ical  formula  in [4] 

Nu L 0.36 ~" 0.2~ = ~rL , (17) 

which has been repeatedly conf i rmed by tes ts .  

The effect of the tempera ture  gradient  on the heat  t r ans fe r  coefficient was studied in the case  of a 
power- law profi le of the t empera tu re  excess ,  with the power exponent equal to 2.0, 1.5, 1.0, 0.5, 0.25, 
- 0 . 2 5 ,  - 0 . 5 ,  and - 0 . 6  respect ive ly .  The test  data were  then evaluated in t e r m s  of power monomials  

Nu L ~, ~, 0.25 
~m%Ir L . 

The averaging values of C m for  each test  s e r i e s  a re  compared  in Fig. 1 with theoret ical  values.  The e m -  
pir ical  re la t ion Nu L = f(GrL) cor responding  to a square - law profile of the t empera tu re  excess  is shown in 
Fig. 3 (curve 2). As compared  to an i so thermal  plate,  the heat t r ans fe r  ra te  is in this case 70% higher .  
As the power exponent dec rea se s ,  the heat  t r ans fe r  coefficient also dec reases  and, according to computed 
data,  becomes  ze ro  when m = - 0 . 6 .  The tes t  data for this specific case a re  given in Table 1. 

At x > 0.18 m the measured  local heat t r ans fe r  coefficients were  by approximately two o rde r s  of 
magnitude sma l l e r  than according to formula  (17) for an i so thermal  plate. At the lower edge the heat 
t r a n s f e r  ra te  was reduced less  appreciably.  At x = 0.024 m,  for example,  the local heat t r ans fe r  coeffi-  
cient  was only 5.5 t imes smal le r .  An explanation for  this may be, mos t  probably,  that the t empera tu re  
profi le along the height of the ca lo r ime te r  plate could be regulated only d iscre te ly .  On account of this, 
the profi le of the t empera tu re  excess  was recons t ruc ted  approximately only, in the form of a piecewise 
constant  function deviating from the stipulated profile mos t  markedly  at low values of the a rgument  (Fig. 
4, curve 1). The overal l  thermal  flux density,  calculated on the bas is  of the mean  heat t r ans fe r  coeffi-  
cient  for an i so thermal  plate with a mean- in tegra l  t empera tu re  excess  of 20~ was found to be 13 t imes 
higher  than the mean  thermal  flux density measu red  at 0 w = dx -~ . 
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Tes t s  were  also pe r fo rmed  with an exponential- law profi le  of the t empera tu re  excess ,  0w = b ekx. 
The va lues  of  p a r a m e t e r  k we re  made equal to 15, 10, 5, and - 5  respec t ive ly .  The prof i le  of the t e m p e r a -  
tu re  excess  along the plate height is shown in Fig. 4b for  k = 10 and - 5  respec t ive ly .  The tes t  r e su l t s  a re  
shown in Fig. 1 in t e r m s  of the re la t ion  Nt~L/Gr~ 25 = f(kx). 

The theore t ica l  re la t ion  shown in [1] (for P r  = 0.7) ag rees  with the tes t  data only within kx > 0.5. 
This  is ,  apparent ly ,  due to the s ingular i ty  at k = 0 in the s imi la r i ty  t rans format ion  used in [1]. The values  
of local  heat  t r ans fe r  coefficients  calculated according to formula  (14) agree  with the tes t  data over  the en -  
t i r e  tes t  range of kx (see Fig. 1). 

Thus ,  the approximate  re la t ion (14) obtained for the general  case  of an a r b i t r a r y  t empera tu re  p ro -  
file along the plate height has been checked against  t es t  data,  with the profi le  of the t empera tu re  excess  
assumed  to follow two different  laws respec t ive ly  and with var ious  values assumed for  k and m determining 
the ra te  of inc rease  or  dec rease  of the t empera tu re  excess  in the direct ion of flow. Such an agreement  
between resu l t s  of measu remen t  and calculation also conf i rms,  indirect ly ,  the validity of the assumption 
that the law governing the heat t r ans fe r  is self-adjoint  with r e spec t  to the t empera tu re  gradient.  
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NOTATION 

heat-content  th ickness;  
thickness of the hydrodynamic boundary l aye r ;  
thickness of the thermal  boundary l aye r ;  
absc issas  measu red  f rom the lower edge along the plate;  
ordinates  along a normal  to the plate;  
plate length; 
heat  t r an s f e r  coeff icient ;  
the rmal  conductivity; 
specif ic  heat;  
densi ty;  
kinematic  v iscos i ty ;  

the t empera tu re  excess  in the boundary l ayer ;  
the t empera tu re  excess  at  the wall (plate) ; 
the t empera tu re  a t  the plate sur face ;  
the ambient  t empera tu re  beyond the boundary l aye r ;  
the t empera tu re  in the boundary l ayer ;  
the Nusse l t  number ;  
the Prandt l  number; 
the Grashof  number ;  
the heat loss due to radiat ion;  
the surface  a rea  of an e lec t r ic  hea te r .  

S u b s c r i p t s  

L r e l a t e s  to local  values;  
0 r e l a t e s  to flow without t empera tu re  gradient .  
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